翻訳と辞書
Words near each other
・ Trigonostylops
・ Trigonotarbida
・ Trigonothops
・ Trigonotoma
・ Trigonotretidae
・ Trigonuropodidae
・ Trigortsi
・ Trigrad Gap
・ Trigrad Gorge
・ Trigram
・ Trigram (disambiguation)
・ Trigram search
・ Trigram tagger
・ Trigrammia
・ Trigraph
Trigonometric moment problem
・ Trigonometric number
・ Trigonometric polynomial
・ Trigonometric series
・ Trigonometric substitution
・ Trigonometric tables
・ Trigonometry
・ Trigonometry (album)
・ Trigonometry in Galois fields
・ Trigonomma
・ Trigonon
・ Trigonoorda
・ Trigonoorda gavisalis
・ Trigonoorda iebelealis
・ Trigonoorda psarochroa


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Trigonometric moment problem : ウィキペディア英語版
Trigonometric moment problem
In mathematics, the trigonometric moment problem is formulated as follows: given a finite sequence , does there exist a positive Borel measure ''μ'' on the interval (2''π'' ) such that
:\alpha_k = \frac\int_0 ^ e^\,d \mu(t).
In other words, an affirmative answer to the problems means that are the first ''n'' + 1 ''Fourier coefficients'' of some positive Borel measure ''μ'' on (2''π'' ).
== Characterization ==

The trigonometric moment problem is solvable, that is, is a sequence of Fourier coefficients, if and only if the (''n'' + 1) × (''n'' + 1) Toeplitz matrix
:
A =
\left(\begin
\alpha_0 & \alpha_1 & \cdots & \alpha_n \\
\bar & \alpha_0 & \cdots & \alpha_ \\
\vdots & \vdots & \ddots & \vdots \\
\bar & \bar\right)
is positive semidefinite.
The "only if" part of the claims can be verified by a direct calculation.
We sketch an argument for the converse. The positive semidefinite matrix ''A'' defines a sesquilinear product on C''n'' + 1, resulting in a Hilbert space
:(\mathcal, \langle \;,\; \rangle)
of dimensional at most ''n'' + 1, a typical element of which is an equivalence class denoted by (). The Toeplitz structure of ''A'' means that a "truncated" shift is a partial isometry on \mathcal. More specifically, let be the standard basis of C''n'' + 1. Let \mathcal be the subspace generated by and \mathcal be the subspace generated by . Define an operator
:V: \mathcal \rightarrow \mathcal
by
:V() = () \quad \mbox \quad k = 0 \ldots n-1.
Since
:\langle V(), V() \rangle = \langle (), () \rangle = A_ = A_ = \langle (), () \rangle,
''V'' can be extended to a partial isometry acting on all of \mathcal. Take a minimal unitary extension ''U'' of ''V'', on a possibly larger space (this always exists). According to the spectral theorem, there exists a Borel measure ''m'' on the unit circle T such that for all integer ''k''
:\langle (U^
*)^k (e_ ), (e_ ) \rangle = \int_ dm .
For ''k'' = 0,...,''n'', the left hand side is
:
\langle (U^
*)^k (e_ ), (e_ ) \rangle
= \langle (V^
*)^k (e_ ), (e_ ) \rangle
= \langle (), (e_ ) \rangle
= A_
= \bar.

So
:
\int_ dm
= \int_^k dm
= \alpha_k.

Finally, parametrize the unit circle T by ''eit'' on (2''π'' ) gives
:\frac \int_0 ^ e^ d\mu(t) = \alpha_k
for some suitable measure ''μ.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Trigonometric moment problem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.